Транзистор принцип действия простым словом. Что такое транзистор и как он работает? Упрощённая схема работы

24.11.2019 Желудок

Понять, для чего нужен транзистор, лучше всего поможет такая аналогия: если маленькая клетка - кирпичик в живом организме, то транзистор - кирпич в цифровой революции. Без него все технологические чудеса, используемые нами каждый день (мобильные телефоны, компьютеры, автомобили), значительно отличались бы от современных, а то и вовсе не существовали бы.

Исторический обзор

Прежде чем были изобретены полупроводниковые элементы электрических схем, для тех же целей конструкторы использовали вакуумные лампы и механические выключатели. Лампы были далеки от идеала. Им требовался разогрев перед началом работы, они не могли похвастаться надёжностью ненадёжностью и компактностью, потребляли слишком много энергии. Все приборы, начиная от телевизоров до ранних компьютеров, были созданы на их основе.

После Второй мировой войны учёные активно искали альтернативу лампам и нашли ответ в работах Юлия Лилиенфельда конца 1920-х годов. Этот американский физик польского происхождения подал на патентование трёхэлектродное устройство, изготовленное из сульфида меди. К сожалению, нет доказательств, что он на самом деле сделал рабочий прибор. Но его исследования помогли создать то, что сегодня называется полевым транзистором.

Через 20 лет после Лилиенфельда компания Bell остро нуждалась в чём-то более совершенном для своих систем связи, чем лампы. Она собрала звёздную команду научных умов для работ по исследованию заменителей вакуумных элементов, в числе группы были:

  • Джон Бардин;
  • Уолтер Браттейн;
  • Уильям Шокли.

В 1947 году Шокли был директором транзисторного исследования в Bell, Браттейн слыл авторитетом в физике твёрдого тела, а Бардин - инженером-электриком и физиком. В течение года они удачно экспериментировали с германием, и вскоре после этого Шокли усовершенствовал их идеи, разработав транзисторный переход. В следующем году Bell объявила всему миру об изобретении рабочего полупроводникового триода. В 1956 году команда учёных за это открытие получила Нобелевскую премию по физике.

Понимание масштабов изобретения и того, зачем нужны транзисторы, невозможно без осознания такого факта: эти маленькие устройства позволили сделать один из самых больших технологических скачков человечества. И это не преувеличение - они действительно изменили ход истории.

Упрощённая схема работы

Транзисторы - устройства, контролирующие движение электронов, а следовательно, электрический ток. Для понимания того, что делает транзистор, лучше всего подойдёт аналогия с водяным краном и потоком жидкости, но, в отличие от последнего, они не только могут пропустить или перекрыть поток, но также способны контролировать его количество. Применение транзисторов чрезвычайно широко и основано на том, что в качестве электронного компонента он может выполнять две разные функции:

Базовая структура

Корпус, изоляция, полупроводниковый кристалл, металлические выводы - вот из чего состоит транзистор. Различное легирование полупроводника позволяет создать два типа его структуры:

  • p-тип;
  • n-тип.

Сам кристалл представляет собой бутерброд из этих двух типов, расположенных так, что два одинаковых слоя сэндвича содержат между собой противоположные. В зависимости от их комбинации транзистор называют либо типом p-n-p, либо n-p-n. Названия трёх выводов, соединённых с соответствующими слоями, являются общими для всех видов биполярных и полевых транзисторов соответственно и отражают их назначение (в скобках указаны термины, применяемые в отношении полевых):

  • база (затвор);
  • коллектор (сток);
  • эмиттер (исток).

База (затвор) принимает слабый управляющий сигнал, а сильный коллекторный ток (от истока к стоку) протекает между двумя другими контактами. Последний меняется в зависимости от тока базы. Внешне транзистор выглядит как радиоэлектронный компонент с тремя выводами.

Виды и типы

Время изобретения транзисторов не было случайным. Для правильной работы их кристаллы требуют чистых полупроводниковых материалов. Именно после Второй мировой войны прогресс технологии в получении германия, а также достижения в области легирования позволили получать материалы, пригодные для серийного изготовления полупроводниковых приборов.

Позже вместо германия в коммерческой электронике стали использовать кремний. Полупроводники на его основе более надёжны и доступны, чем германиевые. Кремниевые подходят для компьютерного производства. В чипах транзисторы не изолированы как отдельные компоненты, а являются частью того, что называется интегральной схемой, и располагаются на едином кристалле полупроводника вместе с другими элементами - конденсаторами и резисторами. Современные кремниевые устройства в составе микрочипа настолько малы, что их размеры измеряются в нанометрах.

Эволюция материалов для изготовления этих приборов не стоит на месте. Благодаря последним достижениям основой триодов в XXI веке может стать материал под названием графен. Он переносит электроны гораздо быстрее, чем кремний, и может стать основой компьютерных чипов, которые на порядки производительнее устроенных на базе кремния полупроводников.

То, какими бывают транзисторы, не исчерпывается их делением по материалу кристалла. Существуют две большие группы, отличающиеся способами управления:

  • полевые;
  • биполярные.

Слово «полевые» означает, что затвор управляется электрическим полем, то есть для изменения тока между стоком и истоком достаточно изменить напряжение. А в биполярных реакции коллекторного тока добиваются путём изменения тока на базе. Биполярные устройства массово использовались в 1960−70 годах и востребованы в наше время в качестве элементов аналоговых схем в основном благодаря тому, что они просты в изготовлении и обладают большой линейностью. Полевые захватили почти всю долю рынка цифровых схем.

Существуют и другие типы транзисторов. Их каталогизируют не только по принципу работы, но и по мощности, рабочим частотам, структуре, применению и другим показателям. Развитие этих устройств продолжается без снижения темпа. Например, учёными из Южной Кореи недавно создан p-n переход, изготовленный из одной молекулы бензола. Современные чипы производят много неиспользуемого тепла. В этой связи у молекулярных транзисторов может быть большое будущее - они способны стать ключом к повышению энергоэффективности.

Независимо от того, в каких направлениях будет осуществляться развитие технологий, очевидно, что благодаря активному исследованию способов совершенствования транзисторов компьютеры станут быстрее, дешевле и надёжнее, а сотовые телефоны - ещё легче и компактнее. Эти маленькие устройства продолжают менять технологический ландшафт и в конечном счёте наше общество в целом. Эта замечательная судьба для простого устройства, изобретённого более 60 лет назад.

Прежде чем рассматривать типы транзисторов, следует выяснить, что вообще представляет собой транзистор и для чего используется.

Что такое транзистор

Транзистором называется полупроводниковый триод, представляющий собой компонент, используемый в области радиоэлектроники, изготавливаемый из полупроводниковых материалов. Он имеет три вывода, позволяющие управлять в цепи электрическим током с помощью входного сигнала.

Из-за своих качеств применяется в тех случаях, когда необходимо преобразовать, сгенерировать или усилить электрические сигналы. Название транзистора применяется и для других устройств, имитирующих основное качество транзистора - способность изменять сигнал в двух различных состояниях, при одновременном изменении сигнала управляющего электрода.

Виды и характеристика

Все транзисторы подразделяются на два вида - NPN и PNP. В этих на первый взгляд сложных аббревиатурах, нет ничего особо сложного. Данными буквенными обозначениями определяется порядок наложения специфических слоев. Такими слоями являются pn-переходы в полупроводниковых материалах, использованных для их изготовления. Глядя визуально на любой полупроводник, невозможно определить тип полупроводниковой структуры, расположенной внутри корпуса. Эти данные обозначаются маркировкой, нанесенной на корпус. Тип транзистора необходимо знать заранее, поскольку использование его в схеме может быть самым различным.

Следует помнить о том, что NPN и PNP совершенно разные. Поэтому их нельзя просто так перепутать или заменить между собой. Заменить один на другой возможно при определенных условиях. Основное условие - значительное изменение схемы включения этих транзисторов. Таким образом, для определенных узлов радиотехнических устройств, применяются только свои, конкретные марки, в противном случае, устройство просто выйдет из строя, и не будет работать.

Технологические различия

Помимо типа pn-перехода, все они различаются технологией применяемой для их изготовления.

В связи с этим, можно отметить два видаа транзисторов, различающихся параметрами:

  • Биполярные - отличаются подачей в их базу тока небольшой величины. Этот ток, в свою очередь, служит для управления количеством тока, проходящего между эмиттером и коллектором.
  • - оборудуются тремя выводами, носящими название затвор, сток и исток. В данном случае, на затвор транзистора воздействует не ток, а напряжение. Эти транзисторы отличаются различной полярностью.

Радиоэлектронный элемент из полупроводникового материала с помощью входного сигнала создает, усиливает, изменяет импульсы в интегральных микросхемах и системах для хранения, обработки и передачи информации. Транзистор – это сопротивление, функции которого регулируются напряжением между эмиттером и базой или истоком и затвором в зависимости от типа модуля.

Виды транзисторов

Преобразователи широко применяются в производстве цифровых и аналоговых микросхем для обнуления статического потребительского тока и получения улучшенной линейности. Типы транзисторов различаются тем, что одни управляются изменением напряжения, вторые регулируются отклонением тока.

Полевые модули работают при повышенном сопротивлении постоянного тока, трансформация на высокой частоте не увеличивает энергетические затраты. Если говорить, что такое транзистор простыми словами, то это модуль с высокой границей усиления. Эта характеристика у полевых видов больше, чем у биполярных типов. У первых нет рассасывания носителей заряда, что ускоряет работу.

Полевые полупроводники применяются чаще из-за преимуществ перед биполярными видами:

  • мощного сопротивления на входе при постоянном токе и высокой частоте, это уменьшает потери энергии на управление;
  • отсутствия накопления неосновных электронов, из-за чего ускоряется работа транзистора;
  • переноса подвижных частиц;
  • стабильности при отклонениях температуры;
  • небольших шумов из-за отсутствия инжекции;
  • потребления малой мощности при работе.

Виды транзисторов и их свойства определяют назначение. Нагревание преобразователя биполярного типа увеличивает ток по пути от коллектора к эмиттеру. У них коэффициент сопротивления отрицательный, а подвижные носители текут к собирающему устройству от эмиттера. Тонкая база отделена p-n-переходами, а ток возникает только при накоплении подвижных частиц и их инжекции в базу. Некоторые носители заряда захватываются соседним p-n-переходом и ускоряются, так рассчитаны параметры транзисторов.

Полевые транзисторы имеют еще один вид преимущества, о котором нужно упомянуть для чайников. Их соединяют параллельно без выравнивания сопротивления. Резисторы для этой цели не применяются, так как показатель растет автоматически при изменении нагрузки. Для получения высокого значения коммутационного тока набирается комплекс модулей, что используется в инверторах или других устройствах.

Нельзя соединять параллельно биполярный транзистор, определение функциональных параметров ведет к тому, что выявляется тепловой пробой необратимого характера. Эти свойства связаны с техническими качествами простых p-n каналов. Модули соединяются параллельно с применением резисторов для выравнивания тока в эмиттерных цепях. В зависимости от функциональных черт и индивидуальной специфики в классификации транзисторов выделяют биполярные и полевые виды.

Биполярные транзисторы

Биполярные конструкции производятся в виде полупроводниковых приборов с тремя проводниками. В каждом из электродов предусмотрены слои с дырочной p-проводимостью или примесной n-проводимостью. Выбор комплектации слоев определяет выпуск p-n-p или n-p-n типов приборов. В момент включения устройства разнотипные заряды одновременно переносятся дырками и электронами, задействуется 2 вида частиц.

Носители движутся за счет механизма диффузии. Атомы и молекулы вещества проникают в межмолекулярную решетку соседнего материала, после чего их концентрация выравнивается по всему объему. Перенос совершается из областей с высоким уплотнением в места с низким содержанием.

Электроны распространяются и под действием силового поля вокруг частиц при неравномерном включении легирующих добавок в массе базы. Чтобы ускорить действие прибора, электрод, соединенный со средним слоем, делают тонким. Крайние проводники называют эмиттером и коллектором. Обратное напряжение, характерное для перехода, неважно.

Полевые транзисторы

Полевой транзистор управляет сопротивлением с помощью электрического поперечного поля, возникающего от приложенного напряжения. Место, из которого электроны движутся в канал, называется истоком, а сток выглядит как конечная точка вхождения зарядов. Управляющее напряжение проходит по проводнику, именуемому затвором. Устройства делят на 2 вида:

  • с управляющим p-n-переходом;
  • транзисторы МДП с изолированным затвором.

Приборы первого типа содержат в конструкции полупроводниковую пластину, подключаемую в управляемую схему с помощью электродов на противоположных сторонах (сток и исток). Место с другим видом проводимости возникает после подсоединения пластины к затвору. Вставленный во входной контур источник постоянного смещения продуцирует на переходе запирающее напряжение.

Источник усиливаемого импульса также находится во входной цепи. После перемены напряжения на входе трансформируется соответствующий показатель на p-n-переходе. Модифицируется толщина слоя и площадь поперечного сечения канального перехода в кристалле, пропускающем поток заряженных электронов. Ширина канала зависит от пространства между обедненной областью (под затвором) и подложкой. Управляющий ток в начальной и конечной точках регулируется изменением ширины обедненной области.

Транзистор МДП характеризуется тем, что его затвор отделен изоляцией от канального слоя. В полупроводниковом кристалле, называемом подложкой, создаются легированные места с противоположным знаком. На них установлены проводники – сток и исток, между которыми на расстоянии меньше микрона расположен диэлектрик. На изоляторе нанесен электрод из металла – затвор. Из-за полученной структуры, содержащей металл, диэлектрический слой и полупроводник транзисторам присвоена аббревиатура МДП.

Устройство и принцип работы для начинающих

Технологии оперируют не только зарядом электричества, но и магнитным полем, световыми квантами и фотонами. Принцип действия транзистора заключается в состояниях, между которыми переключается устройство. Противоположный малый и большой сигнал, открытое и закрытое состояние – в этом заключается двойная работа приборов.

Вместе с полупроводниковым материалом в составе, используемого в виде монокристалла, легированного в некоторых местах, транзистор имеет в конструкции:

  • выводы из металла;
  • диэлектрические изоляторы;
  • корпус транзисторов из стекла, металла, пластика, металлокерамики.

До изобретения биполярных или полярных устройств использовались электронные вакуумные лампы в виде активных элементов. Схемы, разработанные для них, после модификации применяются при производстве полупроводниковых устройств. Их можно было подключить как транзистор и применять, т. к. многие функциональные характеристики ламп годятся при описании работы полевых видов.

Преимущества и недостатки замены ламп транзисторами

Изобретение транзисторов является стимулирующим фактором для внедрения инновационных технологий в электронике. В сети используются современные полупроводниковые элементы, по сравнению со старыми ламповыми схемами такие разработки имеют преимущества:

  • небольшие габариты и малый вес, что важно для миниатюрной электроники;
  • возможность применить автоматизированные процессы в производстве приборов и сгруппировать этапы, что снижает себестоимость;
  • использование малогабаритных источников тока из-за потребности в низком напряжении;
  • мгновенное включение, разогревание катода не требуется;
  • повышенная энергетическая эффективность из-за снижения рассеиваемой мощности;
  • прочность и надежность;
  • слаженное взаимодействие с дополнительными элементами в сети;
  • стойкость к вибрации и ударам.

Недостатки проявляются в следующих положениях:

  • кремниевые транзисторы не функционируют при напряжении больше 1 кВт, лампы эффективны при показателях свыше 1-2 кВт;
  • при использовании транзисторов в мощных сетях радиовещания или передатчиках СВЧ требуется согласование маломощных усилителей, подключенных параллельно;
  • уязвимость полупроводниковых элементов к воздействию электромагнитного сигнала;
  • чувствительная реакция на космические лучи и радиацию, требующая разработки стойких в этом плане радиационных микросхем.

Схемы включения

Чтобы работать в единой цепи транзистору требуется 2 вывода на входе и выходе. Почти все виды полупроводниковых приборов имеют только 3 места подсоединения. Чтобы выйти из трудного положения, один из концов назначается общим. Отсюда вытекают 3 распространенные схемы подключения:

  • для биполярного транзистора;
  • полярного устройства;
  • с открытым стоком (коллектором).

Биполярный модуль подключается с общим эмиттером для усиления как по напряжению, так и по току (ОЭ). В других случаях он согласовывает выводы цифровой микросхемы, когда существует большой вольтаж между внешним контуром и внутренним планом подключения. Так работает подсоединение с общим коллектором, и наблюдается только рост тока (ОК). Если нужно повышение напряжения, то элемент вводится с общей базой (ОБ). Вариант хорошо работает в составных каскадных схемах, но в однотранзисторных проектах ставится редко.

Полевые полупроводниковые приборы разновидностей МДП и с использованием p-n-перехода включаются в контур:

  • с общим эмиттером (ОИ) – соединение, аналогичное ОЭ модуля биполярного типа
  • с единым выходом (ОС) – план по типу ОК;
  • с совместным затвором (ОЗ) – похожее описание ОБ.

В планах с открытым стоком транзистор включается с общим эмиттером в составе микросхемы. Коллекторный вывод не подсоединяется к другим деталям модуля, а нагрузка уходит на наружный разъем. Выбор интенсивности вольтажа и силы тока коллектора производится после монтажа проекта. Приборы с открытым стоком работают в контурах с мощными выходными каскадами, шинных драйверах, логических схемах ТТЛ.

Для чего нужны транзисторы?

Область применение разграничена в зависимости от типа прибора – биполярный модуль или полевой. Зачем нужны транзисторы? Если необходима малая сила тока, например, в цифровых планах, используют полевые виды. Аналоговые схемы достигают показателей высокой линейности усиления при различном диапазоне питающего вольтажа и выходных параметров.

Областями установки биполярных транзисторов являются усилители, их сочетания, детекторы, модуляторы, схемы транзисторной логистики и инверторы логического типа.

Места применения транзисторов зависят от их характеристик. Они работают в 2 режимах:

  • в усилительном порядке, изменяя выходной импульс при небольших отклонениях управляющего сигнала;
  • в ключевом регламенте, управляя питанием нагрузок при слабом входном токе, транзистор полностью закрыт или открыт.

Вид полупроводникового модуля не изменяет условия его работы. Источник подсоединяется к нагрузке, например, переключатель, усилитель звука, осветительный прибор, это может быть электронный датчик или мощный соседний транзистор. С помощью тока начинается работа нагрузочного прибора, а транзистор подсоединяется в цепь между установкой и источником. Полупроводниковый модуль ограничивает силу энергии, поступающей к агрегату.

Сопротивление на выходе транзистора трансформируется в зависимости от вольтажа на управляющем проводнике. Сила тока и напряжение в начале и конечной точке цепи изменяются и увеличиваются или уменьшаются и зависят от типа транзистора и способа его подсоединения. Контроль управляемого источника питания ведет к усилению тока, импульса мощности или увеличению напряжения.

Транзисторы обоих видов используются в следующих случаях:

  1. В цифровом регламенте. Разработаны экспериментальные проекты цифровых усилительных схем на основе цифроаналоговых преобразователей (ЦАП).
  2. В генераторах импульсов. В зависимости от типа агрегата транзистор работает в ключевом или линейном порядке для воспроизведения прямоугольных или произвольных сигналов, соответственно.
  3. В электронных аппаратных приборах. Для защиты сведений и программ от воровства, нелегального взлома и использования. Работа проходит в ключевом режиме, сила тока управляется в аналоговом виде и регулируется с помощью ширины импульса. Транзисторы ставят в приводы электрических двигателей, импульсные стабилизаторы напряжения.

Монокристаллические полупроводники и модули для размыкания и замыкания контура увеличивают мощность, но функционируют только как переключатели. В цифровых устройствах применяют транзисторы полевого типа в качестве экономичных модулей. Технологии изготовления в концепции интегральных экспериментов предусматривают производство транзисторов на едином чипе из кремния.

Миниатюризация кристаллов ведет к ускорению действия компьютеров, снижению количества энергии и уменьшению выделения тепла.

Транзистор - главный компонент в любой электрической схеме. Эта статья именно о них и написана для начинающих радиолюбителей. Транзистор - своего рода усилительный ключ, принцип работы похож на тиристора. Без транзисторов в электронике никак не обойтись, на них собирают буквально все - простейшие мигалки, транзисторные усилители мощности низкой частоты, радиоприемники и передатчики, телевизионная и видео аппаратура и многие другие устройства. Транзисторами можно увеличить или снизить первоначальное напряжения источника питания, если они используются в схемах преобразователей.

Сам транзистор - полупроводниковый прибор, в основном кристалл транзистора делают из кремния или германия. Транзисторы бывают двух видов - однополярные и двухполярные, соответственно полевые и биполярные. По проводимости тоже бывают двух видов - транзисторы прямой проводимости (п - н - п) и транзисторы обратной проводимости (н - п - н). Н -П - от латыни негатив и позитив. На схемах легко можно отличить какой проводимости транзистор использован - если стрелка эмиттера входит в транзистор, значит он прямой проводимости, если же выходит из транзистора, значит транзистор имеет обратную проводимость тока.

Для работы транзистора на базу подают маленький ток, впоследствии которого транзистор открывается и может пропустить более большой ток через эмиттер - коллектор, то есть подавая сравнительно маленький ток на базу мы можем управлять более большим токам. Иными словами, прилагая лёгкое усилие поворачивая водопроводный кран, мы управляем мощным потоком воды. Транзистор может находится в двух состояниях, он открыт - когда на базу подано напряжение (рабочее состояние транзистора) и закрыт, когда ток не течет на базу (состояние покоя транзистора).

По рабочей частоте часто всего используют низкочастотные и высокочастотные транзисторы. Низкочастотные транзисторы применяют для силовых цепей преобразователей напряжения, усилителей мощности в блоках питания и так далее. Низкочастотные транзисторы как правило бывают большей мощности. Высокочастотные транзисторы работающие на частотах в несколько гигагерц тоже применяются очень часто. В основном они нашли широкое применения в радиоприёмной и передающей аппаратуре, в усилителях высокой частоты и во многих других приборах. Такие транзисторы имеют сравнительно маленькую мощность, они незаменимы в области радиоприема и передачи.

Транзисторы бывают самых разных форм и размеров - от невидимого для человеческих глаз чип элементов для поверхностного монтажа, до мегамощных транзисторов размером с дом.

Последние могут иметь мощность до сотни мегаватт, их в основном используют в электростанциях и на заводах. Для лучшей проводимости тока по контактам транзистора высокой частоты часто наносят тонкий слой золота или серебра, но в последнее время такие транзисторы встречаются очень редко, в основном такие транзисторы использовались в радиоаппаратуре времен советского союза. Новичкам уверен данный материал помог разобраться что к чему и прояснить вопросы по транзисторам - Артур Касьян (АКА).

Обсудить статью ЧТО ТАКОЕ ТРАНЗИСТОР

Транзистор, иначе называемый полупроводниковым триодом — электронное устройство, основой которого являются полупроводниковые материалы. Основное назначение прибора — возможность, с помощью изменения слабого тока в управляющей цепи, получать усиленный сигнал на выходе. Полупроводниковый триод — одна из основных составляющих схем множества электронных устройств, от радиоприёмника до компьютера.

Определение «транзистор» тесно связано с этимологией этого слова. Оно образовано от двух английских слов: transfer (переносить) и resistor (сопротивление). Действительно, принцип работы устройства связан с переносом (изменением) сопротивления в электрической цепи.

  • биполярные;
  • полевые (униполярные).

Каждый класс, в свою очередь, делится на несколько разновидностей.

Биполярные:

Оба этих типа триодов могут использоваться в одной электронной схеме. Поэтому, для того чтобы не перепутать, какую именно деталь надо использовать в конкретном месте схемы, изображения p-n-p и n-p-n триодов отличаются друг от друга.

Полевые:

  • униполярные с p-n переходом;
  • МДП-транзисторы с изолированным затвором.

Принцип работы устройства

В электронике применяются полупроводники с электронной (n) или дырочной (p) проводимостью. Эти обозначения говорят о том, что в первом случае в полупроводнике преобладают отрицательно заряженные электроны, во втором — положительно заряженные дырки.

Рассмотрим, как устроен транзистор на примере биполярного полупроводникового триода. Внешне прибор выглядит как небольшая деталь в металлическом или пластиковом корпусе с тремя выводами. Внутри — своеобразный бутерброд из трёх слоёв полупроводника . Если центральный слой p-типа, то окружающие его слои — n-типа. Получается триод n-p-n. Если же центр, именуемый также базой, n-типа, то обкладки — из полупроводника с дырочной проводимостью, а структура устройства — p-n-p. Один из внешних слоёв называется эмиттером, другой коллектором. К каждой из этих трёх частей прибора бывает подведён соответствующий вывод.

Краткое пояснение, как работает транзистор, для «чайников» выглядит так. Возьмём для примера транзистор n-p-n, где эмиттер и коллектор являются слоями с преимущественно электронной проводимостью, а база — с дырочной.

Подключаем эмиттер к отрицательному выводу электрической батареи, а базу и коллектор — к положительному. Начинающему любителю электроники можно представить, что триод состоит из двух диодов , причём диод эмиттер — база включён в прямом направлении, и через него протекает ток, а диод база — коллектор включён в обратном направлении, и ток отсутствует.

Предположим, что мы включили в цепь базы переменный резистор, с помощью которого можем регулировать подаваемое на базу напряжение. Какой эффект мы получим при уменьшении напряжения до нуля? Ток в цепи эмиттер-база перестанет течь. Немного увеличим напряжение. Электроны из n — области эмиттера устремятся к базе, подключённой к плюсу батареи.

Важная деталь — база сделана максимально тонкой. Поэтому масса электронов проходит этот слой насквозь и оказывается в коллекторе под воздействием положительного полюса батареи, к которому притягивается. Таким образом, ток начинает проходить не только между эмиттером и базой, но и между эмиттером и коллектором. При этом ток коллектора значительно больше тока базы.

Ещё одно важное обстоятельство : небольшое изменение базового тока вызывает значительно более сильное изменение коллекторного тока. Таким образом, полупроводниковый триод служит для усиления различных сигналов. Обычно биполярные триоды чаще используются в аналоговой технике.

Полевые транзисторы

Этот тип триода отличается от биполярного не свойствами или функциями, а принципом работы. В полевом триоде ток движется от вывода, называемого истоком, к выводу, именуемому стоком, по полупроводнику одного вида проводимости, например, p. А управление силой этого тока производится с помощью изменения напряжения на третьем выводе — затворе.

Такая структура более точно отвечает требованиям современной цифровой техники, где в основном и применяются полевые триоды. Сегодняшние технологические возможности позволяют разместить на кристалле полупроводника площадью 1−2 квадратных сантиметров несколько миллиардов МДП-элементов с изолированным затвором. Таким образом создаются центральные процессоры персональных компьютеров.

Перспективы развития приборов

Перспективы лежат, в первую очередь, в сфере дальнейшей миниатюризации устройств. Так, американские учёные разрабатывают сегодня так называемый одномолекулярный транзистор. Основным элементом такого устройства является молекула бензола, к которой присоединены три электрода.

Если идея оправдает себя, появится возможность создания сверхмощных вычислительных комплексов. Ведь размер молекулы гораздо меньше размера сегодняшних МДП-триодов на кристалле кремниевого чипа.