Сокращение дробей онлайн. Умножение, деление и сокращение алгебраических дробей

Работая с дробями, многие ученики допускают одни и те же ошибки. А все потому, что они забывают элементарные правила арифметики . Сегодня мы повторим эти правила на конкретных задачах, которые я даю на своих занятиях.

Вот задача, которую я предлагаю каждому, кто готовится к ЕГЭ по математике:

Задача. Морская свинья ест 150 грамм корма в день. Но она выросла и стала есть на 20% больше. Сколько грамм корма теперь ест свинья?

Неправильное решение. Это задача на проценты, которая сводится к уравнению:

Многие (очень многие) сокращают число 100 в числителе и знаменателе дроби:

Вот такую ошибку допустила моя ученица прямо в день написания этой статьи. Красным отмечены числа, которые были сокращены.

Излишне говорить, что ответ получился неправильный. Судите сами: свинья ела 150 грамм, а стала есть 3150 грамм. Увеличение не на 20%, а в 21 раз, т.е. на 2000%.

Чтобы не допускать подобных недоразумений, помните основное правило:

Сокращать можно только множители. Слагаемые сокращать нельзя!

Таким образом, правильное решение предыдущей задачи выглядит так:

Красным отмечены цифры, которые сокращаются в числителе и знаменателе. Как видите, в числителе стоит произведение, знаменателе — обыкновенное число. Поэтому сокращение вполне законно.

Работа с пропорциями

Еще одно проблемное местопропорции . Особенно когда переменная стоит с обеих сторон. Например:

Задача. Решите уравнение:

Неправильное решение — у некоторых буквально руки чешутся сократить все на m :

Сокращаемые переменные показаны красным. Получается выражение 1/4 = 1/5 — полный бред, эти числа никогда не равны.

А теперь — правильное решение. По существу, это обыкновенное линейное уравнение . Решается либо переносом всех элементов в одну сторону, либо по основному свойству пропорции:

Многие читатели возразят: «Где ошибка в первом решении?» Что ж, давайте разбираться. Вспомним правило работы с уравнениями:

Любое уравнение можно делить и умножать на любое число, отличное от нуля .

Просекли фишку? Можно делить только на числа, отличные от нуля . В частности, можно делить на переменную m , только если m != 0. А что делать, если все-таки m = 0? Подставим и проверим:

Получили верное числовое равенство, т.е. m = 0 — корень уравнения. Для остальных m != 0 получаем выражение вида 1/4 = 1/5, что, естественно, неверно. Таким образом, не существует корней, отличных от нуля.

Выводы: собираем все вместе

Итак, для решения дробно-рациональных уравнений помните три правила:

  1. Сокращать можно только множители. Слагаемые — нельзя. Поэтому учитесь раскладывать числитель и знаменатель на множители;
  2. Основное свойство пропорции: произведение крайних элементов равно произведению средних;
  3. Уравнения можно умножать и делить только на числа k , отличные от нуля. Случай k = 0 надо проверять отдельно.

Помните эти правила и не допускайте ошибок.

Сокращение дробей нужно для того, чтобы привести дробь к более простому виду, например, в ответе полученном в результате решения выражения.

Сокращение дробей, определение и формула.

Что такое сокращение дробей? Что значит сократить дробь?

Определение:
Сокращение дробей – это разделение у дроби числитель и знаменатель на одно и то же положительное число не равное нулю и единице. В итоге сокращения получается дробь с меньшим числителем и знаменателем, равная предыдущей дроби согласно .

Формула сокращения дробей основного свойства рациональных чисел.

\(\frac{p \times n}{q \times n}=\frac{p}{q}\)

Рассмотрим пример:
Сократите дробь \(\frac{9}{15}\)

Решение:
Мы можем разложить дробь на простые множители и сократить общие множители.

\(\frac{9}{15}=\frac{3 \times 3}{5 \times 3}=\frac{3}{5} \times \color{red} {\frac{3}{3}}=\frac{3}{5} \times 1=\frac{3}{5}\)

Ответ: после сокращения получили дробь \(\frac{3}{5}\). По основному свойству рациональных чисел первоначальная и получившееся дробь равны.

\(\frac{9}{15}=\frac{3}{5}\)

Как сокращать дроби? Сокращение дроби до несократимого вида.

Чтобы нам получить в результате несократимую дробь, нужно найти наибольший общий делитель (НОД) для числителя и знаменателя дроби.

Есть несколько способов найти НОД мы воспользуемся в примере разложением чисел на простые множители.

Получите несократимую дробь \(\frac{48}{136}\).

Решение:
Найдем НОД(48, 136). Распишем числа 48 и 136 на простые множители.
48=2⋅2⋅2⋅2⋅3
136=2⋅2⋅2⋅17
НОД(48, 136)= 2⋅2⋅2=6

\(\frac{48}{136}=\frac{\color{red} {2 \times 2 \times 2} \times 2 \times 3}{\color{red} {2 \times 2 \times 2} \times 17}=\frac{\color{red} {6} \times 2 \times 3}{\color{red} {6} \times 17}=\frac{2 \times 3}{17}=\frac{6}{17}\)

Правило сокращения дроби до несократимого вида.

  1. Нужно найти наибольший общий делитель для числители и знаменателя.
  2. Нужно поделить числитель и знаменатель на наибольший общий делитель в результате деления получить несократимую дробь.

Пример:
Сократите дробь \(\frac{152}{168}\).

Решение:
Найдем НОД(152, 168). Распишем числа 152 и 168 на простые множители.
152=2⋅2⋅2⋅19
168=2⋅2⋅2⋅3⋅7
НОД(152, 168)= 2⋅2⋅2=6

\(\frac{152}{168}=\frac{\color{red} {6} \times 19}{\color{red} {6} \times 21}=\frac{19}{21}\)

Ответ: \(\frac{19}{21}\) несократимая дробь.

Сокращение неправильной дроби.

Как сократить неправильную дробь?
Правила сокращения дробей для правильных и неправильных дробей одинаковы.

Рассмотрим пример:
Сократите неправильную дробь \(\frac{44}{32}\).

Решение:
Распишем на простые множители числитель и знаменатель. А потом общие множители сократим.

\(\frac{44}{32}=\frac{\color{red} {2 \times 2 } \times 11}{\color{red} {2 \times 2 } \times 2 \times 2 \times 2}=\frac{11}{2 \times 2 \times 2}=\frac{11}{8}\)

Сокращение смешанных дробей.

Смешанные дроби по тем же правилам что и обыкновенные дроби. Разница лишь в том, что мы можем целую часть не трогать, а дробную часть сократить или смешанную дробь перевести в неправильную дробь, сократить и перевести обратно в правильную дробь.

Рассмотрим пример:
Сократите смешанную дробь \(2\frac{30}{45}\).

Решение:
Решим двумя способами:
Первый способ:
Распишем дробную часть на простые множители, а целую часть не будем трогать.

\(2\frac{30}{45}=2\frac{2 \times \color{red} {5 \times 3}}{3 \times \color{red} {5 \times 3}}=2\frac{2}{3}\)

Второй способ:
Переведем сначала в неправильную дробь, а потом распишем на простые множители и сократим. Полученную неправильную дробь переведем в правильную.

\(2\frac{30}{45}=\frac{45 \times 2 + 30}{45}=\frac{120}{45}=\frac{2 \times \color{red} {5 \times 3} \times 2 \times 2}{3 \times \color{red} {3 \times 5}}=\frac{2 \times 2 \times 2}{3}=\frac{8}{3}=2\frac{2}{3}\)

Вопросы по теме:
Можно ли сокращать дроби при сложении или вычитании?
Ответ: нет, нужно сначала сложить или вычесть дроби по правилам, а только потом сокращать. Рассмотрим пример:

Вычислите выражение \(\frac{50+20-10}{20}\) .

Решение:
Часто допускают ошибку сокращая одинаковые числа в числителе и знаменателе в нашем случаем число 20, но их сокращать нельзя пока не выполните сложение и вычитание.

\(\frac{50+\color{red} {20}-10}{\color{red} {20}}=\frac{60}{20}=\frac{3 \times 20}{20}=\frac{3}{1}=3\)

На какие числа можно сокращать дробь?
Ответ: можно сокращать дробь на наибольший общий делитель или обычный делитель числителя и знаменателя. Например, дробь \(\frac{100}{150}\).

Распишем на простые множители числа 100 и 150.
100=2⋅2⋅5⋅5
150=2⋅5⋅5⋅3
Наибольшим общим делителем будет число НОД(100, 150)= 2⋅5⋅5=50

\(\frac{100}{150}=\frac{2 \times 50}{3 \times 50}=\frac{2}{3}\)

Получили несократимую дробь \(\frac{2}{3}\).

Но необязательно всегда делить на НОД не всегда нужна несократимая дробь, можно сократить дробь на простой делитель числителя и знаменателя. Например, у числа 100 и 150 общий делитель 2. Сократим дробь \(\frac{100}{150}\) на 2.

\(\frac{100}{150}=\frac{2 \times 50}{2 \times 75}=\frac{50}{75}\)

Получили сократимую дробь \(\frac{50}{75}\).

Какие дроби можно сокращать?
Ответ: сокращать можно дроби у которых числитель и знаменатель имеют общий делитель. Например, дробь \(\frac{4}{8}\). У числа 4 и 8 есть число, на которое они оба делятся это число 2. Поэтому такую дробь можно сократить на число 2.

Пример:
Сравните две дроби \(\frac{2}{3}\) и \(\frac{8}{12}\).

Эти две дроби равны. Рассмотрим подробно дробь \(\frac{8}{12}\):

\(\frac{8}{12}=\frac{2 \times 4}{3 \times 4}=\frac{2}{3} \times \frac{4}{4}=\frac{2}{3} \times 1=\frac{2}{3}\)

Отсюда получаем, \(\frac{8}{12}=\frac{2}{3}\)

Две дроби равны тогда и только тогда, когда одна из них получена путем сокращения другой дроби на общий множитель числителя и знаменателя.

Пример:
Сократите если возможно следующие дроби: а) \(\frac{90}{65}\) б) \(\frac{27}{63}\) в) \(\frac{17}{100}\) г) \(\frac{100}{250}\)

Решение:
а) \(\frac{90}{65}=\frac{2 \times \color{red} {5} \times 3 \times 3}{\color{red} {5} \times 13}=\frac{2 \times 3 \times 3}{13}=\frac{18}{13}\)
б) \(\frac{27}{63}=\frac{\color{red} {3 \times 3} \times 3}{\color{red} {3 \times 3} \times 7}=\frac{3}{7}\)
в) \(\frac{17}{100}\) несократимая дробь
г) \(\frac{100}{250}=\frac{\color{red} {2 \times 5 \times 5} \times 2}{\color{red} {2 \times 5 \times 5} \times 5}=\frac{2}{5}\)

Дроби и их сокращение — еще одна тема, которая начинается в 5 классе. Здесь формируется база этого действия, а потом эти умения тянутся ниточкой в высшую математику. Если ученик не усвоил, то у него могут возникнуть проблемы в алгебре. Поэтому лучше уяснить несколько правил раз и навсегда. А еще запомнить один запрет и никогда его не нарушать.

Дробь и ее сокращение

Что это такое, знает каждый ученик. Любые две цифры расположенные между горизонтальной чертой сразу воспринимаются, как дробь. Однако не все понимают, что ею может стать любое число. Если оно целое, то его всегда можно разделить на единицу, тогда получится неправильная дробь. Но об этом позже.

Начало всегда простое. Сначала нужно выяснить, как сократить правильную дробь. То есть такую, у которой числитель меньше, чем знаменатель. Для этого потребуется вспомнить основное свойство дроби. Оно утверждает, что при умножении (так же, как и делении) одновременно ее числителя и знаменателя на одинаковое число получается, равноценная исходной дробь.

Действия деления, которые выполняются в этом свойстве и приводят к сокращению. То есть максимальному ее упрощению. Дробь можно сокращать до тех пор, пока над чертой и под ней есть общие множители. Когда их уже не будет, то сокращение невозможно. И говорят, что эта дробь несократимая.

Два способа

1. Пошаговое сокращение. В нем используется метод прикидки, когда оба числа делятся на минимальный общий множитель, который заметил ученик. Если после первого сокращения видно, что это не конец, то деление продолжается. Пока дробь не станет несократимой.

2. Нахождение наибольшего общего делителя у числителя и знаменателя. Это самый рациональный способ того, как сокращать дроби. Он подразумевает разложение числителя и знаменателя на простые множители. Среди них потом нужно выбрать все одинаковые. Их произведение даст наибольший общий множитель, на который сокращается дробь.

Оба эти способа равноценны. Ученику предлагается освоить их и пользоваться тем, который больше понравился.

Что делать, если есть буквы и действия сложения и вычитания?

С первой частью вопроса все более-менее понятно. Буквы можно сокращать так же как и числа. Главное, чтобы они выступали в роли множителей. А вот со второй у многих возникают проблемы.

Важно запомнить! Сокращать можно только числа, которые являются множителями. Если они слагаемые — нельзя.

Для того чтобы понять, как сокращать дроби, имеющие вид алгебраического выражения, нужно усвоить правило. Сначала представить числитель и знаменатель в виде произведения. Потом можно сокращать, если появились общие множители. Для представления в виде множителей пригодятся такие приемы:

  • группировка;
  • вынесение за скобку;
  • применение тождеств сокращенного умножения.

Причем последний способ дает возможность сразу получить слагаемые в виде множителей. Поэтому его необходимо использовать всегда, если видна известная закономерность.

Но это еще не страшно, потом появляются задания со степенями и корнями. Вот тогда требуется набраться смелости и усвоить пару новых правил.

Выражение со степенью

Дробь. В числителе и знаменателе произведение. Есть буквы и числа. А они еще и возведены в степень, которая тоже состоит из слагаемых или множителей. Есть чего испугаться.

Для того чтобы разобраться в том, как сокращать дроби со степенями, потребуется выучить два момента:

  • если в показателе степени стоит сумма, то ее можно разложить на множители, степенями которых будут исходные слагаемые;
  • если разность, то на делимое и делитель, у первого в степени будет уменьшаемое, у второго — вычитаемое.

После выполнения этих действий становятся видны общие множители. В таких примерах нет необходимости вычислять все степени. Достаточно просто сократить степени с одинаковыми показателями и основаниями.

Для того чтобы окончательно усвоить то, как сокращать дроби со степенями, нужно много практиковаться. После нескольких однотипных примеров действия будут выполняться уже автоматически.

А если в выражении стоит корень?

Его тоже можно сократить. Только опять же, соблюдая правила. Причем верны все те, которые были описаны выше. В общем, если стоит вопрос о том, как сократить дробь с корнями, то нужно делить.

На иррациональные выражения тоже можно разделить. То есть если в числителе и знаменателе стоят одинаковые множители, заключенные под знак корня, то их можно смело сокращать. Это приведет к упрощению выражения и выполнению задания.

Если после сокращения под чертой дроби осталась иррациональность, то от нее нужно избавиться. Другими словами, умножить на нее числитель и знаменатель. Если после этой операции появились общие множители, то их снова нужно будет сократить.

Вот, пожалуй, и все о том, как сокращать дроби. Правил немного, а запрет один. Никогда не сокращать слагаемые!

В этой статье мы рассмотрим основные действия с алгебраическими дробями :

  • сокращение дробей
  • умножение дробей
  • деление дробей

Начнем с сокращения алгебраических дробей .

Казалось бы, алгоритм очевиден.

Чтобы сократить алгебраические дроби , нужно

1. Разложить числитель и знаменатель дроби на множители.

2. Сократить одинаковые множители.

Однако, школьники часто делают ошибку, "сокращая" не множители, а слагаемые. Например, есть любители, которые в дроби "сокращают" на и получают в результате , что, разумеется, неверно.

Рассмотрим примеры:

1. Сократить дробь:

1. Разложим на множители числитель по формуле квадрата суммы, а знаменатель по формуле разности квадратов

2. Разделим числитель и знаменатель на

2. Сократить дробь:

1. Разложим на множители числитель. Так как числитель содержит четыре слагаемых, применим группировку.

2. Разложим на множители знаменатель. Так же применим группировку.

3. Запишем дробь, которая у нас получилась и сократим одинаковые множители:

Умножение алгебраических дробей.

При умножении алгебраических дробей мы числитель умножаем на числитель, а знаменатель умножаем на знаменатель.


Важно! Не нужно торопиться выполнять умножение в числителе и знаменателе дроби. После того, как мы записали в числителе произведение числителей дробей, а в знаменателе - произведение знаменателей, нужно разложить на множители каждый множитель и сократить дробь.

Рассмотрим примеры:

3. Упростите выражение:

1. Запишем произведение дробей: в числителе произведение числителей, а в знаменателе произведение знаменателей:

2. Разложим каждую скобку на множители:

Теперь нам нужно сократить одинаковые множители. Заметим, что выражения и отличаются только знаком: и в результате деления первого выражения на второе получим -1.

Итак,

Деление алгебраических дробей мы выполняем по такому правилу:


То есть чтобы разделить на дробь, нужно умножить на "перевернутую".

Мы видим, что деление дробей сводится к умножению, а умножение, в конечном итоге, сводится к сокращению дробей.

Рассмотрим пример:

4. Упростите выражение:

На этом уроке мы изучим основное свойство дроби, узнаем, какие дроби являются равными друг другу. Научимся сокращать дроби, определять, является ли дробь сократимой или нет, попрактикуемся в сокращении дробей и узнаем, когда стоит использовать сокращение, а когда нет.

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Adipisci autem beatae consectetur corporis dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore voluptate!

Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla?

Эта информация доступна зарегистрированным пользователям

Основное свойство дроби

Представьте себе такую ситуацию.

За столом 3 человека и 5 яблок. Делятся 5 яблок на троих. Каждому достается по \(\mathbf{\frac{5}{3}}\) яблока.

А за соседним столом еще 3 человека и тоже 5 яблок. Каждому опять по \(\mathbf{\frac{5}{3}}\)

При этом всего 10 яблок и 6 человек. Каждому по \(\mathbf{\frac{10}{6}}\)

Но это одно и то же.

\(\mathbf{\frac{5}{3} = \frac{10}{6}}\)

Эти дроби эквивалентны.

Можно увеличить в два раза количество людей и в два раза количество яблок. Результат будет тем же самым.

В математике это формулируется так:

Если числитель и знаменатель дроби умножить или разделить на одно и то же число (не равное 0), то новая дробь будет равна исходной .

Это свойство иногда называют «основным свойством дроби ».

$$\mathbf{\frac{a}{b} = \frac{a\cdot c}{b\cdot c} = \frac{a:d}{b:d}}$$

Например, Путь от города до деревни- 14 км.

Мы идем по дороге и определяем пройденный путь по километровым столбикам. Пройдя шесть столбиков, шесть километров, мы понимаем, что прошли \(\mathbf{\frac{6}{14}}\) пути.

Но если мы не видим столбиков (может, их не установили), можно путь считать по электрическим столбам вдоль дороги. Их 40 штук на каждый километр. То есть всего 560 на всем пути. Шесть километров- \(\mathbf{6\cdot40 = 240}\) столбов. То есть мы прошли 240 из 560 столбов- \(\mathbf{\frac{240}{560}}\)

\(\mathbf{\frac{6}{14} = \frac{240}{560}}\)

Пример 1

Отметьте точку с координатами (5; 7 ) на координатной плоскости Y . Она будет соответствовать дроби \(\mathbf{\frac{5}{7}}\)

Соедини начало координат с получившейся точкой. Построй другую точку, которая имеет координаты в два раза больших предыдущих. Какую дробь ты получил? Будут ли они равны?

Решение

Дробь на координатной плоскости можно отмечать точкой. Чтобы изобразить дробь \(\mathbf{\frac{5}{7}}\), отметим точку с координатой 5 по оси Y и 7 по оси X . Проведем прямую из начала координат через нашу точку.

На этой же прямой будет лежать и точка, соответствующая дроби \(\mathbf{\frac{10}{14}}\)

Они являются эквивалентными: \(\mathbf{\frac{5}{7} = \frac{10}{14}}\)