Эукариоты состав. Кто такие эукариоты и прокариоты: сравнительная характеристика клеток разных царств

Плазмалемма (клеточная оболочка) животных клеток образована мембраной, покрытой снаружи слоем гликокаликса толщиной 10-20 нм.Плазмалемма выполняет отграничивающую, барьерную, транспортную и рецепторную функции. Благодаря свойству избирательной проницаемости плазмалемма регулирует химический состав внутренней среды клетки. В плазмалемме размещены молекулы рецепторов, которые избирательно распознают определенные биологически активные вещества (гормоны). В пластах и слоях соседние клетки удерживаются благодаря наличию разного вида контактов, которые представлены участками плазмалеммы, имеющими особое строение. Изнутри к мембране примыкает кортикальный (корковый) слой цитоплазмы толщиной 0,1-0,5 мкм.

Цитоплазма. В цитоплазме находится целый ряд оформленных структур, имеющих закономерные особенности строения и поведения в разные периоды жизнедеятельности клетки. Каждая из этих структур несёт определенную функцию. Отсюда возникло сопоставление их с органами целого организма, в связи с чем они получили названиеорганеллы , илиорганоиды . В цитоплазме откладываются различные вещества - включения (гликоген, капли жира, пигменты). Цитоплазма пронизана мембранами эндоплазматической сети .

Эндоплазматическая сеть (ЭДС) . Эндоплазматическая сеть - это разветвлённая сеть каналов и полостей в цитоплазме клетки, образованная мембранами. На мембранах каналов находятся многочисленные ферменты, обеспечивающие жизнедеятельность клетки. Различают 2 вида мембран ЭДС - гладкие и шероховатые. На мембранах гладкой эндоплазматической сети находятся ферментные системы, участвующие в жировом и углеводном обмене. Основная функцияшероховатой эндоплазматической сети - синтез белков, который осуществляется в рибосомах, прикрепленных к мембранам.Эндоплазматическая сеть - это общая внутриклеточная циркуляционная система, по каналам которой транспортируются вещества внутри клетки и из клетки в клетку.

Рибосомы осуществляют функцию синтеза белков. Рибосомы представляют собой сферические частицы диаметром 15-35нм, состоящие из 2 субъединиц неравных размеров и содержащие примерно равное количество белков иРНК. Рибосомы в цитоплазме располагаются или прикрепляются к наружной поверхности мембран эндоплазматической сети. В зависимости от типа синтезируемого белка рибосомы могут объединяться в комплексы -полирибосомы . Рибосомы присутствуют во всех типах клеток.

Комплекс Гольджи. Основным структурным элементомкомплекса Гольджи является гладкая мембрана, которая образует пакеты уплощенных цистерн, или крупные вакуоли, или мелкие пузырьки. Цистерны комплекса Гольджи соединены с каналами эндоплазматической сети. Синтезированные на мембранах эндоплазматической сети белки, полисахариды, жиры транспортируются к комплексу, конденсируются внутри его структур и "упаковываются" в виде секрета, готового к выделению, либо используются в самой клетке в процессе её жизнедеятельности.

Митохондрии. Всеобщее распространение митохондрий в животном и растительном мире указывают на важную роль, которуюмитохондрии играют в клетке.Митохондрии имеют форму сферических, овальных и цилиндрических телец, могут быть нитевидной формы. Размеры митохондрий 0,2-1мкм в диаметре, до 5-7мкм в длину. Длина нитевидных форм достигает 15-20мкм. Количество митохондрий в клетках различных тканей неодинаково, их больше там, где интенсивны синтетические процессы (печень) или велики затраты энергии. Стенка митохондрий состоит из 2-х мембран - наружной и внутренней. Наружная мембрана гладкая, а от внутренней внутрь органоида отходят перегородки - гребни, или кристы. На мембранах крист находятся многочисленные ферменты, участвующие в энергетическом обмене.Основная функция митохондрий - синтезАТФ.

Лизосомы - небольшие овальные тельца диаметром около 0,4мкм, окруженные одной трехслойной мембраной. В лизосомах находится около 30 ферментов, способных расщеплять белки, нуклеиновые кислоты, полисахариды, липиды и др. вещества. Расщепление веществ с помощью ферментов называетсялизисом , поэтому и органоид названлизосомой . Полагают, что лизосомы образуются из структур комплекса Гольджи либо непосредственно из эндоплазматической сети.Функции лизосом : внутриклеточное переваривание пищевых веществ, разрушение структуры самой клетки при её отмирании в ходе эмбрионального развития, когда происходит замена зародышевых тканей на постоянные, и в ряде других случаев.

Центриоли. Клеточный центр состоит из 2-х очень маленьких телец цилиндрической формы, расположенных под прямым углом друг к другу. Эти тельца называютсяцентриолями . Стенка центриоли состоит из 9-ти пар микротрубочек. Центриоли способны к самосборке и относятся к самовоспроизводящимся органоидам цитоплазмы. Центриоли играют важную роль в клеточном делении: от них начинается рост микротрубочек, образующих веретено деления.

Ядро. Ядро - важнейшая составная часть клетки. Оно содержит молекулыДНКи поэтому выполняет две главные функции: 1) хранение и воспроизведение генетической информации, 2) регуляция процессов обмена веществ, протекающих в клетке. Клетка утратившаяядро , не может существовать. Ядро также неспособно к самостоятельному существованию. Большинство клеток имеет одно ядро, но можно наблюдать 2-3ядра в одной клетке, например в клетках печени. Известны многоядерные клетки с числом ядер в несколько десятков. Формы ядер зависят от формы клетки. Ядра бывают шаровидные, многолопастные. Ядро окружено оболочкой, состоящей из двух мембран, имеющих обычное трёхслойное строение. Наружная ядерная мембрана покрыта рибосомами, внутренняя мембрана гладкая. Главную роль в жизнедеятельности ядра играет обмен веществ между ядром и цитоплазмой. Содержимое ядра включает ядерный сок, или кариоплазму, хроматин и ядрышко. В состав ядерного сока входят различные белки, в том числе большинство ферментов ядра, свободные нуклеотиды, аминокислоты, продукты деятельности ядрышка и хроматина, перемещающиеся из ядра в цитоплазму.Хроматин содержит ДНК, белки и представляет собой спирализованные и уплотненные участки хромосом.Ядрышко представляет собой плотное округлое тельце, располагающееся в ядерном соке. Число ядрышек колеблется от 1 до 5-7 и более. Ядрышки есть только в неделящихся ядрах, во время митоза они исчезают, а после завершения деление образуются вновь. Ядрышко не является самостоятельным органоидом клетки, оно лишено мембраны и образуется вокруг участка хромосомы, в котором закодирована структура рРНК. В ядрышке формируются рибосомы, которые затем перемещаются в цитоплазму.Хроматином называют глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличные по форме от ядрышка.

2) 1. Клеточная теория

Клеточная теория – это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.

Появлению и формулированию отдельных положений клеточной теории предшествовал довольно длительный период накопления наблюдений над строением различных одноклеточных и многоклеточных организмов растений и животных. Этот период был связан с развитием применения и усовершенствования различных оптических методов исследований.

Роберт Гук первым наблюдал с помощью увеличительных линз подразделение тканей пробки на «ячейки», или «клетки». Его описания послужили толчком для появления систематических исследований анатомии растений, которые подтвердили наблюдения Роберта Гука и показали, что разнообразные части растений состоят из тесно расположенных «пузырьков», или «мешочков». Позднее А. Левенгук открыл мир одноклеточных организмов и впервые увидел клетки животных. Позднее клетки животных были описаны Ф. Фонтана; но эти и другие многочисленные исследования не привели в то время к пониманию универсальности клеточного строения, к четким представлениям о том, что же являет собой клетка. Прогресс в изучении микроанатомии и клетки связан с развитие микроскопирования в XIX в. К этому времени изменились представления о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а собственно ее содержимое, протоплазма. В протоплазме был открыт постоянный компонент клетки – ядро. Все эти многочисленные наблюдения позволили Т. Шванну в 1838 г. сделать ряд обобщений. Он показал, что клетки растений и животных принципиально сходны между собой. «Заслуга Т. Шванна заключалась не в том, что он открыл клетки как таковые, а в том, что он научил исследователей понимать их значение». Дальнейшее развитие эти представления получили в работах Р. Вирхова. Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы. Клеточная теория оказала значительное влияние на развитие биологии, послужили главным фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. Она дала основы для понимания жизни, для объяснения родственной взаимосвязи организмов, для понимания индивидуального развития.

Основные положения клеточной теории сохранили свое значение и на сегодняшний день, хотя более чем за сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клеток. В настоящее время клеточная теория постулирует:

1) Клетка – элементарная единица живого: – вне клетки нет жизни.

2) Клетка – единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование, состоящее из сопряженных функциональных единиц – органелл или органоидов.

3) Клетки сходны – гомологичны – по строению и по основным свойствам.

4) Клетки увеличиваются в числе путем деления исходной клетки после удвоения ее генетического материала: клетка от клетки.

5) Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системы тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных.

6) Клетки многоклеточных организмов тотипотентны, т.е. обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией различных генов, что приводит к их морфологическому и функциональному разнообразию – к дифференцировке.

Представление о клетке как о самостоятельной жизнедеятельной единице было дано еще в работах Т. Шванна. Р. Вирхов также считал, что каждая клетка несет в себе полную характеристику жизни: «Клетка есть последний морфологический элемент всех живых тел, и мы не имеем права искать настоящей жизнедеятельности вне ее».

Современная наука полностью доказала это положение. В популярной литературе клетку часто называют «атомом жизни», «квантом жизни», подчеркивая тем самым, что клетка – это наименьшая единица живого, вне которой нет жизни.

Такая общая характеристика клетки должна в свою очередь опираться на определение живого – что такое живое, что такое жизнь. Очень трудно дать окончательное определение живого, жизни.

М.В. Волькенштейн дает следующее определение жизни: «живые организмы представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, важнейшими функционирующими веществами которых являются белки и нуклеиновые кислоты». Живому свойствен ряд совокупных признаков, таких, как способность к воспроизведению, использование и трансформация энергии, метаболизм, чувствительность, изменчивость. И такую совокупность этих признаков можно обнаружить на клеточном уровне. Нет меньшей единицы живого, чем клетка. Мы можем выделить из клетки отдельные ее компоненты или даже молекулы и убедиться, что многие из них обладают специфическими функциональными особенностями. Так, выделенные актомиозиновые фибриллы могут сокращаться в ответ на добавление АТФ; вне клетки прекрасно «работают» многие ферменты, участвующие в синтезе или распаде сложных биоорганических молекул; выделенные рибосомы в присутствии необходимых факторов могут синтезировать белок, разработаны неклеточные системы ферментативного синтеза нуклеиновых кислот и т.д. Можно ли считать все эти клеточные компоненты, структуры, ферменты, молекулы живыми? Можно ли считать живым актомиозиновый комплекс? Думается, что нет, хотя бы потому, что он обладает лишь частью набора свойств живого. То же относится и к остальным примерам. Только клетка как таковая является наименьшей единицей, обладающей всеми вместе взятыми свойствами, отвечающими определению «живое».

3) Основу поверхностного аппарата клеток (ПАК) составляет наружная клеточная мембрана, или плазмалемма. Кроме плазмалеммы в ПАК имеется надмембранный комплекс, а у эукариот - и субмембранный комплекс. Основными биохимическими компонентами плазмалеммы (от греч. плазма - образование и лемма - оболочка, корка) являются липиды и белки. Их количественное соотношение у большинства эукариот составляет 1:1, а у прокариот в плазмалемме преобладают белки. В наружной клеточной мембране обнаруживается небольшое количество углеводов и могут встречаться жироподобные соединения (у млекопитающих - холестерол, жирорастворимые витамины). В 1925 г. Е. Гортер и Ф. Грендел (Голландия) предположили, что основу мембраны составляет двойной слой липидов - билипидный слой. В 1935 г. Дж.Даниэли и Г.Даусон предложили первую пространственную модель организации мембран, получившую название "сэндвич", или "бутербродная " модель. По их мнению, основой мембраны является билипидный слой, а обе поверхности слоя покрыты сплошными слоями белков. Дальнейшее изучение клеточных мембран, включая плазмалемму, показало, что почти во всех случаях они имеют сходное строение. В 1972 г. С.Зингер и Г.Николсон (США) сформулировали представление о жидкостно-мозаичном строении клеточных мембран (рис.). Согласно этой модели, основу мембран составляет билипидный слой, но белки в нем расположены отдельными молекулами и комплексами, т.е. мозаично (от франц. mosaique - мозаика; изображение, составленное из отдельных кусков). В частности, молекулы интегральных (от лат. интегер - целый) белков могут пересекать билипидный слой, полуинткгральных - частично погружаться в него, а периферических (от греч. периферия - окружность) - располагаться на его поверхности (рис.). Современная молекулярная биология подтвердила справедливость жидкостно-мозаичной модели, хотя были обнаружены и другие варианты клеточных мембран. В частности, у архебактерий основу мембраны составляет монослой сложного по строению липида, а некоторые бактерии содержат в цитоплазме мембранные пузырьки, стенки которых представлены белковым монослоем. Надмембранный комплекс поверхностного аппарата клеток характеризуется многообразием строения (рис.). У прокариот надмембранный комплекс в большинстве случаев представлен клеточной стенкой различной толщины, основу которой составляет сложный гликопротеин муреин (у архебактерий - псевдомуреин). У целого ряда эубактерий наружная часть надмембранного комплекса состоит из еще одной мембраны с большим содержанием липополисахаридов.У эукариот универсальным компонентом надмембранного комплекса являются углеводы - компоненты гликолипидов и гликопротеинов плазмалеммы. Благодаря этому его исходно называли гликокаликсом (от греч. гликос - сладкий, углевод и лат. каллум - толстая кожа, оболочка). Кроме углеводов, в состав гликокаликса относят периферические белки над билипидным слоем. Более сложные варианты надмембранного комплекса встречаются у растений (клеточная стенка из целлюлозы), грибов и членистоногих (наружный покров из хитина). Субмембранный (от лат. суб - под) комплекс характерен только для эукариотических клеток. Он состоит из разнообразных белковых нитевидных структур: тонких фибрилл (от лат. фибрилла - волоконце, ниточка), микрофибрилл (от греч. микрос - малый), скелетных (от греч. скелетон - высушенное) фибрилл и микротрубочек. Они связаны друг с другом белками и формируют опорно-сократительный аппарат клетки. Субмембранный комплекс взаимодействует с белками плазмалеммы, которые, в свою очередь, связаны с надмембранным комплексом. В результате ПАК представляет собой структурно целостную систему. Это позволяет ему выполнять важные для клетки функции: изолирующую, транспортную, каталитическую, рецепторно-сигнальную и контактную.

4) В мембранах содержатся также гликолипиды и холестерол. Гликолипиды - это липиды с присоединенными к ним углеводами. Как и у фосфолипидов, угликолипидов имеются полярные головы и неполярные хвосты. Холестерол близок к липидам; в его молекуле также имеется полярная часть.

К эукариотам относятся царства растений, животных, грибов.

Основные признаки эукариот.

  1. Клетка разделена на цитоплазму и ядро.
  2. Большая часть ДНК сосредоточена в ядре. Именно ядерная ДНК отвечает за большую часть процессов жизнедеятельности клетки и за передачу наследственности дочерним клеткам.
  3. Ядерная ДНК расчленена на нити, не замкнутые в кольца.
  4. Нити ДНК линейно вытянуты внутри хромосом, отчетливо видны в процессе митоза. Набор хромосом в ядрах соматических клеток диплоидный.
  5. Развита система наружных и внутренних мембран. Внутренние делят клетку на отдельные отсеки – компартменты. Принимают участие в образовании органоидов клетки.
  6. Органоидов много. Некоторые органоиды окружены двойной мембраной: ядро, митохондрии, хлоропласты. В ядре, наряду с оболочкой и ядерным соком, обнаруживается ядрышко и хромосомы. Цитоплазма представлена основным веществом (матриксом, гиалоплазмой) в которой распределены включения и органеллы.
  7. Большое число органелл ограничено одинарной мембранной (лизосомы, вакуоли и т.д.)
  8. В эукариотической клетке выделяют органеллы общего и специального значения. Например: общего значения – ядро, митохондрии, ЭПС и т.д.; специального значения - микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов.
  9. Характерен митоз – механизм воспроизведения в поколениях генетически сходных клеток.
  10. Свойствен половой процесс. Образуются истинные половые клетки – гаметы.
  11. Не способны к фиксации свободного азота.
  12. Аэробное дыхание происходит в митохондриях.
  13. Фотосинтез проходит в хлоропластах содержащих мембраны, которые обычно уложенные в граны.
  14. Эукариоты представлены одноклеточными, нитчатыми и истинно многоклеточными формами.

Основные структурные компоненты эукариотической клетки

органоиды

Ядро. Строение и функции.

В клетке выделяют ядро и цитоплазму. Клеточное ядро состоит из оболочки, ядерного сока, ядрышка и хроматина. Функциональная рольядерной оболочки заключается в обособлении генетического материала (хромосом) эукариотической клетки от цитоплазмы с присущими ей многочисленными метаболическими реакциями, а также регуляции двусторонних взаимодействий ядра и цитоплазмы. Ядерная оболочка состоит из двух мембран, разделенных околоядерным (перинуклеарным) пространством. Последнее может сообщаться с канальцами цитоплазматической сети.

Ядерная оболочка пронизана порожу диаметром 80-90нм. Область поры или поровый комплекс с диаметром около 120нм имеет определенное строение, что указывает на сложный механизм регуляции ядерно-цитоплазматических перемещений веществ и структур. Количество пор зависит от функционального состояния клетки. Чем выше синтетическая активность в клетке, тем больше их число. Подсчитано, что у низших позвоночных животных в эритробластах, где интенсивно образуется и накапливается гемоглобин, на 1мкм 2 ядерной оболочки приходится около 30пор. В зрелых эритроцитах названных животных, сохраняющих ядра, на 1мк»г оболочки остается до пяти пор, т.е. в 6 раз меньше.

В области перового комплекса начинается так называемая плотная пластинка - белковый слой, подстилающий на всем протяжении внутреннюю мембрану ядерной оболочки. Эта структура выполняет прежде всего опорную функцию, так как при ее наличии форма ядра сохраняется даже в случае разрушения обеих мембран ядерной оболочки. Предполагают также, что закономерная связь с веществом плотной пластинки способствует упорядоченному расположению хромосом в интерфазном ядре.

Основу ядерного сока, илиматрикса, составляют белки. Ядерный сок образует внутреннюю среду ядра, в связи с чем он играет важную роль в обеспечении нормального функционирования генетического материала. В составе ядерного сока присутствуютнитчатые, илифибриллярные, белки, с которыми связано выполнение опорной функции: в матриксе находятся также первичные продукты транскрипции генетической информации - гетероядерные РНК (гя-РНК), которые здесь же подвергаются процессингу, превращаясь в м-РНК (см. 3.4.3.2).

Ядрышко представляет собой структуру, в которой происходит образование и созреваниерибосомальных РНК (рРНК). Гены рРНК занимают определенные участки (в зависимости от вида животного) одной или нескольких хромосом (у человека 13-15и 21-22пары) - ядрышковые организаторы, в области которых и образуются ядрышки. Такие участки в метафазных хромосомах выглядят как сужения и называютсявторичными перетяжками. С помощью электронного микроскопа в ядрышке выявляют нитчатый и зернистый компоненты. Нитчатый (фибриллярный) компонент представлен комплексами белка и гигантских молекул РНК-предшественниц, из которых затем образуются более мелкие молекулы зрелых рРНК. В процессе созревания фибриллы преобразуются в рибонуклеопротеиновые зерна (гранулы), которыми представлен зернистый компонент.

Хроматиновые структуры в виде глыбок, рассеянных в нуклеоплазме, являются интерфазной формой существования хромосом клетки

цитоплазма

В цитоплазме различают основное вещество (матрикс, гиалоплазма), включения и органеллы.Основное вещество цитоплазмы заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Обычный электронный микроскоп не выявляет в нем какой-либо внутренней организации. Белковый состав гиалоплазмы разнообразен. Важнейшие из белков представлены ферментами гаиколиза, обмена Сахаров, азотистых оснований, аминокислот и липидов. Ряд белков гиалоплазмы служит субъединицами, из которых происходит сборка таких структур, как микротрубочки.

Основное вещество цитоплазмы образует истинную внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие их друг с другом. Выполнение матриксом объединяющей, а также каркасной функции может быть связано с выявляемой с помощью сверхмощного электронного микроскопа микротрабекулярной сети, образованной тонкими фибриллами толщиной 2-3нм и пронизывающей всю цитоплазму. Через гиалоплазму осуществляется значительный объем внутриклеточных перемещений веществ и структур. Основное вещество цитоплазмы следует рассматривать так же, как сложную коллоидную систему, способную переходить из золеобразного (жидкого) состояния в гелеобразное. В процессе таких переходов совершается работа. О функциональном значении таких переходов см. разд. 2.3.8.

Включениями (рис. 2.5)называют относительно непостоянные компоненты цитоплазмы, которые служат запасными питательными веществами (жир, гликоген), продуктами, подлежащими выведению из клетки (гранулы секрета), балластными веществами (некоторые пигменты).

Органеллы - это постоянные структуры цитоплазмы, выполняющие в клетке жизненно важные функции.

Выделяют органеллы общего значения испециальные. Последние в значительном количестве присутствуют в клетках, специализированных к выполнению определенной функции, но в незначительном количестве могут встречаться и в других типах клеток. К ним относят, например, микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов, синаптические пузырьки, транспортирующие вещества -переносчики нервного возбуждения с одной нервной клетки на другую или клетку рабочего органа, миофибриллы, от которых зависит сокращение мышцы. Детальное рассмотрение специальных органелл входит в задачу курса гистологии.

К органеллам общего значения относят элементы канальцевой и вакуолярной системы в виде шероховатой и гладкой цитоплазматической сети, пластинчатый комплекс, митохондрии, рибосомы и полисомы, лизосомы, пероксисомы, микрофибриллы и микротрубочки, центриоли клеточного центра. В растительных клетках выделяют также хлоропласта, в которых происходит фотосинтез.

Канальцевая ивакуолярная системы образованы сообщающимися или отдельными трубчатыми или уплощенными (цистерна) полостями, ограниченными мембранами и распространяющимися по всей цитоплазме клетки. Нередко цистерны имеют пузыревидные расширения. В названной системе выделяютшероховатую игладкую цитоплазматическую сети (см. рис. 2.3).Особенность строения шероховатой сети состоит в прикреплении к ее мембранам полисом. В силу этого она выполняет функцию синтеза определенной категории белков, преимущественно удаляемых из клетки, например секретируемых клетками желез. В области шероховатой сети происходит образование белков и липидов цитоплазматических мембран, а также их сборка. Плотно упакованные в слоистую структуру цистерны шероховатой сети являются участками наиболее активного белкового синтеза и называютсяэргастоплазмой.

Мембраны гладкой цитоплазматической сети лишены полисом. Функционально эта сеть связана с обменом углеводов, жиров и других веществ небелковой природы, например стероидных гормонов (в половых железах, корковом слое надпочечников). По канальцам и цистернам происходит перемещение веществ, в частности секретируемого железистой клеткой материала, от места синтеза в зону упаковки в гранулы. В участках печеночных клеток, богатых структурами гладкой сети, разрушаются и обезвреживаются вредные токсические вещества, некоторые лекарства (барбитураты). В пузырьках и канальцах гладкой сети поперечно-полосатой мускулатуры сохраняются (депонируются) ионы кальция, играющие важную роль в процессе сокращения.

Рибосома - это округлая рибонуклеопротеиновая частица диаметром 20-30нм. Она состоит из малой и большой субъединиц, объединение которых происходит в присутствии матричной (информационной) РНК (мРНК). Одна молекула мРНК обычно объединяет несколько рибосом наподобие нитки бус. Такую структуру называютполисомой. Полисомы свободно располагаются в основном веществе цитоплазмы или прикреплены к мембранам шероховатой цитоплазматической сети. В обоих случаях они служат местом активного синтеза белка. Сравнение соотношения количества свободных и прикрепленных к мембранам полисом в эмбриональных недифференцированных и опухолевых клетках, с одной стороны, и в специализированных клетках взрослого организма -с другой, привело к заключению, что на полисомах гиалоплазмы образуются белки для собственных нужд (для «домашнего» пользования) данной клетки, тогда как на полисомах гранулярной сети синтезируются белки, выводимые из клетки и используемые на нужды организма (например, пищеварительные ферменты, белки грудного молока).

Пластинчатый комплекс Голъджи образован совокупностью диктиосом числом от нескольких десятков (обычно около 20)до нескольких сотен и даже тысяч на клетку.

Диктиосома (рис. 2.6,А ) представлена стопкой из 3-12уплощенных дискообразных цистерн, от краев которых отшнуровываются пузырьки (везикулы). Ограниченные определенным участком (локальные) расширения цистерн дают более крупные пузырьки (вакуоли). В дифференцированных клетках позвоночных животных и человека диктиосомы обычно собраны в околоядерной зоне цитоплазмы. В пластинчатом комплексе образуются секреторные пузырьки или вакуоли, содержимое которых составляют белки и другие соединения, подлежащие выводу из клетки. При этом предшественник секрета (просекрет), поступающий.в диктиосому из зоны синтеза, подвергается в ней некоторым химическим преобразованиям. Он также обособляется (сегрегируется) в виде «порций», которые здесь же одеваются мембранной оболочкой. В пластинчатом комплексе образуются лизосомы. В диктиосомах синтезируются полисахариды, а также их комплексы с белками (гликопротеины) и жирами (гликолипиды), которые затем можно обнаружить в гликокаликсе клеточной оболочки.

Оболочка митохондрий состоит из двух мембран, различающихся по химическому составу, набору ферментов и функциям. Внутренняя мембрана образует впячивания листовидной (кристы) или трубчатой (тубулы) формы. Пространство, ограниченное внутренней мембраной, составляет матрикс органеллы. В нем с помощью электронного микроскопа обнаруживаются зерна диаметром 20-40нм. Они накапливают ионы кальция и магния, а также полисахариды, например гликоген.

В матриксе размещен собственный аппарат биосинтеза белка органеллы. Он представлен 2-б копиями кольцевой и лишенной гистонов (как у прокариот) молекулы ДНК, рибосомами, набором транспортных РНК (тРНК), ферментами редупликации ДНК, транскрипции и трансляции наследственной информации. По основным свойствам: размерам и структуре рибосом, организации собственного наследственного материала -этот аппарат сходен с таковым у прокариот и отличается от аппарата биосинтеза белка цитоплазмы эукариотической клетки (чем подтверждается симбиотическая гипотеза происхождения митохондрий; см. § 1.5).Гены собственной ДНК кодируют нуклеотидные последовательности митохондриальных рРНК и тРНК, а также последовательности аминонокислот некоторых белков органеллы, главным образом ее внутренней мембраны. Аминокислотные последовательности (первичная структура) большинства белков митохондрий закодированы в ДНК клеточного ядра и образуются вне органеллы в цитоплазме.

Главная функция митохондрий состоит в ферментативном извлечении из определенных химических веществ энергии (путем их окисления) и накоплении энергии в биологически используемой форме (путем синтеза молекул аденозинтрифосфата -АТФ). В целом этот процесс называетсяокислительным (расформированием. В энергетической функции митохондрий активно участвуют компоненты матрикса и внутренняя мембрана. Именно с этой мембраной связаны цепь переноса электронов (окисление) и АТФ-синтетаза, катализирующая сопряженное с окислением фосфорилирование АДФ в АТФ. Среди побочных функций митохондрий можно назвать участие в синтезе стероидных гормонов и некоторых аминокислот (глутаминовая).

Лизосомы (рис. 2.6,В ) представляют собой пузырьки диаметром обычно 0,2-0,4мкм, которые содержат набор ферментов кислых гидролаз, катализирующих при низких значениях рН гидролитическое (в водной среде) расщепление нуклеиновых кислот, белков, жиров, полисахаридов. Их оболочка образована одинарной мембраной, покрытой иногда снаружи волокнистым белковым слоем (на электронограммах «окаймленные» пузырьки). Функция лизосом - внутриклеточное переваривание оазличных химических соединений и структур.

Первичными лизосомами (диаметр 100нм) называют неактивные органеллы,вторичными - органеллы, в которых происходит процесс переваривания. Вторичные лизосомы образуются из первичных. Они подразделяются нагетеролизосомы (фаголизосомы) иаутолизосомы (цитолизосомы). В первых (рис. 2.6,Г ) переваривается материал, поступающий в клетку извне путем пиноцитоза и фагоцитоза, во вторых разрушаются собственные структуры клетки, завершившие свою функцию. Вторичные лизосомы, в которых процесс переваривания завершен, называютостаточными тельцами (телолизосомы). В них отсутствуют гидролазы и содержится непереваренный материал.

Микротельца составляют сборную группу органелл. Это ограниченные одной мембраной пузырьки диаметром 0,1-1,5мкм с мелкозернистым матриксом и нередко кристаллоидными или аморфными белковыми включениями. К этой группе относят, в частности,пероксисомы. Они содержат ферменты оксидазы, катализирующие образование пероксида водорода, который, будучи токсичным, разрушается затем под действием фермента пероксидазы. Эти реакции включены в различные метаболические циклы, например в обмен мочевой кислоты в клетках печени и почек. В печеночной клетке число пероксисом достигает70-100.

К органеллам общего значения относят также некоторые постоянные структуры цитоплазмы, лишенные мембран. Микротрубочки (рис.2.6,Д ) - трубчатые образования различной длины с внешним диаметром 24нм, шириной просвета 15нм и толщиной стенки около 5нм. Встречаются в свободном состоянии в цитоплазме клеток или как структурные элементы жгутиков, ресничек, митотического веретена, центриолей. Свободные микротрубочки и микротрубочки ресничек, жгутиков и центриолей имеют разную устойчивость к разрушающим воздействиям, например химическим (колхицин). Микротрубочки строятся из стереотипных субьединиц белковой природы путем их полимеризации. В живой клетке процессы полимеризации протекают одновременно с процессами деполимеризации. Соотношением этих процессов определяется количество микротрубочек. В свободном состоянии микротрубочки выполняют опорную функцию, определяя форму клеток, а также являются факторами направленного перемещения внутриклеточных компонентов.

Микрофиламентами (рис. 2.6,Е ) называют длинные, тонкие образования, иногда образующие пучки и обнаруживаемые по всей цитоплазме. Существует несколько разных типов микрофиламентов.Актиновые микрофиламенты благодаря присутствию в них сократимых белков (актин) рассматривают в качестве структур, обеспечивающих клеточные формы движения, например амебоидные. Им приписывают также каркасную роль и участие в организации внутриклеточных перемещений органелл и участков гиалоплазмы.

По периферии клеток под плазмалеммой, а также в околоядерной зоне обнаруживаются пучки микрофиламентов толщиной 10нм - промежуточные филстенты. В эпителиальных, нервных, глиальных, мышечных клетках, фибробластах они построены из разных белков. Промежуточные филаменты выполняют, по-видимому, механическую, каркасную функцию.

Актиновые микрофибриллы и промежуточные филаменты, как и микротрубочки, построены из субъединиц. В силу этого их количество зависит от соотношения процессов полимеризации и деполимеризации.

Для животных клеток, части клеток растений, грибов и водорослей характерен клеточный центр, в состав которого входят центриоли.Центриолъ (под электронным микроскопом) имеет вид «полого» цилиндра диаметром около 150нм и длиной 300-500нм. Ее стенка образована 27микротрубочками, сгруппированными в 9триплетов. В функцию центриолей входит образование нитей митотического веретена, которые также образованы микротрубочками. Центриоли поляризуют процесс деления клетки, обеспечивая расхождение сестринских хроматид (хромосом) в анафазе митоза.

Эукариотическая клетка имеет клеточный скелет (цитоскелет) из внутриклеточных волокон (Кольцов) – начало ХХ века, в конце 1970 вновь открыт. Эта структура позволяет клетке иметь свою форму, иногда изменяя ее. Цитоплазма находится в движении. Цитоскелет участвует с процессе переноса органоидов, участвует в регенерации клеток.

Митохондрии – сложные образования с двойной мембраной(0,2-0,7мкм) и разной формой. Внутренняя мембрана имеет кристы. Наружная мембрана проницаема практически для всех химических веществ, внутренняя – только активный транспорт. Между мембранами – матрикс. Митохондрии располагаются там, где необходима энергия. Митохондрии имеют систему рибосом, молекулу ДНК. Возможно возникновение мутаций (более66 заболеваний). Как правило, они связаны с недостаточной энергией АТФ, часто связаны с сердечно-сосудистой недостаточностью, патологиями. Количество митохондрий разное (в клетке трипаносомы- 1 митохондрия). Количество зависит от возраста, функции, активности ткани (печень – более1000).

Лизосомы – тельца, окруженные элементарной мембраной. Содержат 60 ферментов(40 лизосомальных, гидролитических). Внутри лизосомы – нейтральная среда. Активизируются низкими значениями рН, выходя в цитоплазму (самопереваривание). Мембраны лизосом защищают цитоплазму и клетку от разрушения. Образуются в комплексе Гольджи (внутриклеточный желудок, могут перерабатывать отработавшие свое структуры клетки). Есть 4 вида. 1-первичные, 2-4 – вторичные. С помощью эндоцитоза в клетку попадает вещество. Первичная лизосома (запасающая гранула) с набором ферментов, поглощает вещество и образуется пищеварительная вакуоль (при полном переваривании расщепление идет до низкомолекулярных соединений). Непереваренные остатки остаются в остаточных тельцах, которые могут накапливаться (лизосомные болезни накопления). Остаточные тельца, накапливающиеся в эмбриональном периоде, приводят к гаргалеизму, уродствам, мукополисахаридозам. Аутофагирующие лизосомы уничтожают собственные структуры клетки(ненужные структуры). Могут содержать митохондрии, части комплекса Гольджи. Часто образуются при голодании. Могут возникать при воздействии других клеток (эритроциты).

Митохондрии и пластиды имеют собственную кольцевую ДНК и мелкие рибосомы, за счет них делают сами часть своих белков (полуавтономные органоиды).

Митохондрии принимают участие в (окислении органических веществ) – поставляют АТФ (энергию) для жизнедеятельности клетки, являются «энергетическими станциями клетки».

Немембранные органоиды

Рибосомы - это органоиды, которые занимаются . Состоят из двух субъединиц, по химическому составу – из рибосомной РНК и белков. Субъединицы синтезируются в ядрышке. Часть рибосом присоединены к ЭПС, эта ЭПС называется шероховатая (гранулярная).


Клеточный центр состоит из двух центриолей, которые образуют веретено деления во время деления клетки – митоза и мейоза.


Реснички, жгутики служат для движения.

Выберите один, наиболее правильный вариант. В состав цитоплазмы клетки входят
1) белковые нити
2) реснички и жгутики
3) митохондрии
4) клеточный центр и лизосомы

Ответ


Установите соответствие между функциями и органоидами клеток: 1) рибосомы, 2) хлоропласты. Запишите цифры 1 и 2 в правильном порядке.
А) расположены на гранулярной ЭПС
Б) синтез белка
В) фотосинтез
Г) состоят из двух субъединиц
Д) состоят из гран с тилакоидами
Е) образуют полисому

Ответ


Установите соответствие между строением органоида клетки и органоидом: 1) аппарат Гольджи, 2) хлоропласт. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) двумембранный органоид
Б) есть собственная ДНК
В) имеет секреторный аппарат
Г) состоит из мембраны, пузырьков, цистерн
Д) состоит из тилакоидов гран и стромы
Е) одномембранный органоид

Ответ


Установите соответствие между характеристиками и органоидами клетки: 1) хлоропласт, 2) эндоплазматическая сеть. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) система канальцев, образованных мембраной
Б) органоид образован двумя мембранами
В) транспортирует вещества
Г) синтезирует первичное органическое вещество
Д) включает тилакоиды

Ответ


1. Выберите один, наиболее правильный вариант. Одномембранные компоненты клетки -
1) хлоропласты
2) вакуоли
3) клеточный центр
4) рибосомы

Ответ


2. Выберите три варианта. Какие органоиды клетки отделены от цитоплазмы одной мембраной?
1) комплекс Гольджи
2) митохондрия
3) лизосома
4) эндоплазматическая сеть
5) хлоропласт
6) рибосома

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для описания особенностей строения и функционирования рибосом. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) состоят из триплетов микротрубочек
2) участвуют в процессе биосинтеза белка
3) формируют веретено деления
4) образованы белком и РНК
5) состоят из двух субъединиц

Ответ


Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Выберите двумембранные органеллы:
1) лизосома
2) рибосома
3) митохондрия
4) аппарат Гольджи
5) хлоропласт

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Двухмембранными органоидами растительной клетки являются.
1) хромопласты
2) центриоли
3) лейкопласты
4) рибосомы
5) митохондрии
6) вакуоли

Ответ


ЯДРО1-МИТОХОНДРИЯ1-РИБОСОМА1
Проанализируйте таблицу. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка:

1) ядро
2) рибосома
3) биосинтез белка
4) цитоплазма
5) окислительное фосфорилирование
6) транскрипция
7) лизосома

Ответ


МИТОХОНДРИЯ2-ХРОМОСОМА1-РИБОСОМА2

Проанализируйте таблицу «Структуры эукариотической клетки». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.

1) гликолиз
2) хлоропласты
3) трансляция
4) митохондрии
5) транскрипция
6) ядро
7) цитоплазма
8) клеточный центр

Ответ


ЛИЗОСОМА1-РИБОСОМА3-ХЛОРОПЛАСТ1


1) комплекс Гольджи
2) синтез углеводов
3) одномембранный
4) гидролиз крахмала
5) лизосома
6) немембранный

Ответ


ЛИЗОСОМА2-ХЛОРОПЛАСТ2-РИБОСОМА4

Проанализируйте таблицу. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.

1) двумембранный
2) эндоплазматическая сеть
3) биосинтез белка
4) клеточный центр
5) немембранный
6) биосинтез углеводов
7) одномембранный
8) лизосома

Ответ


ЛИЗОСОМА3-АГ1-ХЛОРОПЛАСТ3
Проанализируйте таблицу «Структуры клетки». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.

1) гликолиз
2) лизосома
3) биосинтез белка
4) митохондрия
5) фотосинтез
6) ядро
7) цитоплазма
8) клеточный центр

Ответ


ХЛОРОПЛАСТ4-АГ2-РИБОСОМА5

Проанализируйте таблицу «Структуры клетки». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.

1) окисление глюкозы
2) рибосома
3) расщепление полимеров
4) хлоропласт
5) синтез белка
6) ядро
7) цитоплазма
8) образование веретена деления

Ответ


АГ3-МИТОХОНДРИЯ3-ЛИЗОСОМА4

Проанализируйте таблицу «Органоиды клетки». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.

1) хлоропласт
2) эндоплазматическая сеть
3) цитоплазма
4) кариоплазма
5) аппарат Гольджи
6) биологическое окисление
7) транспорт веществ в клетке
8) синтез глюкозы

Ответ


1. Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Цитоплазма выполняет в клетке ряд функций:
1) осуществляет связь между ядром и органоидами
2) выполняет роль матрицы для синтеза углеводов
3) служит местом расположения ядра и органоидов
4) осуществляет передачу наследственной информации
5) служит местом расположения хромосом в клетках эукариот

Ответ


2. Определите два верных утверждения из общего списка, и запишите цифры, под которыми они указаны. В цитоплазме происходит
1) синтез белков рибосом
2) биосинтез глюкозы
3) синтез инсулина
4) окисление органических веществ до неорганических
5) синтез молекул АТФ

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Выберите немембранные органеллы:
1) митохондрия
2) рибосома
3) ядро
4) микротрубочка
5) аппарат Гольджи

Ответ



Перечисленные ниже признаки, кроме двух, используются для описания функций изображенного органоида клетки. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) служит энергетической станцией
2) расщепляет биополимеры на мономеры
3) обеспечивает упаковку веществ из клетки
4) синтезирует и накапливает молекулы АТФ
5) участвует в биологическом окислении

Ответ


Установите соответствие между строением органоида и его видом: 1) клеточный центр, 2) рибосома
А) состоит из двух перпендикулярно расположенных цилиндров
Б) состоит из двух субъединиц
В) образован микротрубочками
Г) содержит белки, обеспечивающие движение хромосом
Д) содержит белки и нуклеиновую кислоту

Ответ


Установите последовательность расположения структур в эукариотной клетке растения (начиная снаружи)
1) плазматическая мембрана
2) клеточная стенка
3) ядро
4) цитоплазма
5) хромосомы

Ответ


Выберите три варианта. Чем митохондрии отличаются от лизосом?
1) имеют наружную и внутреннюю мембраны
2) имеют многочисленные выросты - кристы
3) участвуют в процессах освобождения энергии
4) в них пировиноградная кислота окисляется до углекислого газа и воды
5) в них биополимеры расщепляются до мономеров
6) участвуют в обмене веществ

Ответ


1. Установите соответствие между характеристикой органоида клетки и его видом: 1) митохондрия, 2) лизосома. Запишите цифры 1 и 2 в правильном порядке.
А) одномембранный органоид
Б) внутреннее содержимое – матрикс

Г) наличие крист
Д) полуавтономный органоид

Ответ


2. Установите соответствие между характеристиками и органоидами клетки: 1) митохондрия, 2) лизосома. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) гидролитическое расщепление биополимеров
Б) окислительное фосфорилирование
В) одномембранный органоид
Г) наличие крист
Д) формирование пищеварительной вакуоли у животных

Ответ


3. Установите соответствие между признаком и органоидом клетки, для которого он характерен: 1) лизосома, 2) митохондрия. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) наличие двух мембран
Б) аккумулирование энергии в АТФ
В) наличие гидролитических ферментов
Г) переваривание органоидов клетки
Д) образование пищеварительных вакуолей у простейших
Е) расщепление органических веществ до углекислого газа и воды

Ответ


Установите соответствие между органоидом клетки: 1) клеточный центр, 2) сократительная вакуоль, 3) митохондрия. Запишите цифры 1-3 в правильном порядке.
A) участвует в делении клеток
Б) синтез АТФ
B) выделение излишек жидкости
Г) «клеточное дыхание»
Д) поддержание постоянства объема клеток
Е) участвует в развитии жгутиков и ресничек

Ответ


1. Установите соответствие между названием органоидов и наличием или отсутствием у них клеточной мембраны: 1) мембранные, 2) немембранные. Запишите цифры 1 и 2 в правильном порядке.
А) вакуоли
Б) лизосомы
В) клеточный центр
Г) рибосомы
Д) пластиды
Е) аппарат Гольджи

Ответ


2. Установите соответствие между органоидами клетки и их группами: 1) мембранные, 2) немембранные. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) митохондрии
Б) рибосомы
В) центриоли
Г) аппарат Гольджи
Д) эндоплaзматическая сеть
Е) микротрубочки

Ответ


3. Какие три из перечисленных органоидов являются мембранными?
1) лизосомы
2) центриоли
3) рибосомы
4) микротрубочки
5) вакуоли
6) лейкопласты

Ответ


1. Все перечисленные ниже структуры клетки, кроме двух, не содержат ДНК. Определите две структуры клетки, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) рибосомы
2) комплекс Гольджи
3) клеточный центр
4) митохондрии
5) пластиды

Ответ


2. Выберите три органоида клетки, содержащих наследственную информацию.

1) ядро
2) лизосомы
3) аппарат Гольджи
4) рибосомы
5) митохондрии
6) хлоропласты

Ответ


3. Выберите два верных ответа из пяти. В каких структурах клетки эукариот локализованы молекулы ДНК?
1) цитоплазме
2) ядре
3) митохондриях
4) рибосомах
5) лизосомах

Ответ


Выберите один, наиболее правильный вариант. Где в клетке имеются рибосомы, кроме ЭПС
1) в центриолях клеточного центра
2) в аппарате Гольджи
3) в митохондриях
4) в лизосомах

Ответ


Каковы особенности строения и функций рибосом? Выберите три правильных варианта.
1) имеют одну мембрану
2) состоят из молекул ДНК
3) расщепляют органические вещества
4) состоят из большой и малой частиц
5) участвуют в процессе биосинтеза белка
6) состоят из РНК и белка

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. В структуру ядра эукариотической клетки входят
1) хроматин
2) клеточный центр
3) аппарат Гольджи
4) ядрышко
5) цитоплазма
6) кариоплазма

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Какие процессы происходят в ядре клетки?
1) образование веретена деления
2) формирование лизосом
3) удвоение молекул ДНК
4) синтез молекул иРНК
5) образование митохондрий
6) формирование субъединиц рибосом

Ответ


Установите соответствие между органоидом клетки и типом строения, к которому его относят: 1) одномембранный, 2) двумембранный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) лизосома
Б) хлоропласт
В) митохондрия
Г) ЭПС
Д) аппарат Гольджи

Ответ


Установите соответствие между характеристиками и органоидами: 1) хлоропласт, 2) митохондрия. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) наличие стопок гран
Б) синтез углеводов
В) реакции диссимиляции
Г) транспорт электронов, возбуждённых фотонами
Д) синтез органических веществ из неорганических
Е) наличие многочисленных крист

Ответ



Все перечисленные ниже признаки, кроме двух, можно использовать для описания изображённого на рисунке органоида клетки. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) одномембранный органоид
2) содержит фрагменты рибосом
3) оболочка пронизана порами
4) содержит молекулы ДНК
5) содержит митохондрии

Ответ



Перечисленные ниже термины, кроме двух, используются для характеристики органоида клетки, обозначенного на рисунке вопросительным знаком. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) мембранный органоид
2) репликация
3) расхождение хромосом
4) центриоли
5) веретено деления

Ответ


Установите соответствие между характеристиками органоида клетки и его видом: 1) клеточный центр, 2) эндоплазматическая сеть. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) транспортирует органические вещества
Б) образует веретено деления
В) состоит из двух центриолей
Г) одномембранный органоид
Д) содержит рибосомы
Е) немембранный органоид

Ответ


1. Установите соответствие между характеристиками и органоидами клетки: 1) ядро, 2) митохондрия. Запишите цифры 1 и 2 в порядке, соответствующем цифрам.
А) замкнутая молекула ДНК
Б) окислительные ферменты на кристах
В) внутреннее содержимое – кариоплазма
Г) линейные хромосомы
Д) наличие хроматина в интерфазе
Е) складчатая внутренняя мембрана

Ответ


2. Установите соответствие между характеристиками и органоидами клеток: 1) ядро, 2) митохондрия. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) является местом синтеза АТФ
Б) отвечает за хранение генетической информации клетки
В) содержит кольцевую ДНК
Г) имеет кристы
Д) имеет одно или несколько ядрышек

Ответ


Установите соответствие между признаками и органоидами клетки: 1) лизосома, 2) рибосома. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) состоит из двух субъединиц
Б) является одномембранной структурой
В) участвует в синтезе полипептидной цепи
Г) содержит гидролитические ферменты
Д) размещается на мембране эндоплазматической сети
Е) превращает полимеры в мономеры

Ответ


Установите соответствие между характеристиками и клеточными органоидами: 1) митохондрия, 2) рибосома. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) немембранный органоид
Б) наличие собственной ДНК
В) функция - биосинтез белка
Г) состоит из большой и малой субъединиц
Д) наличие крист
Е) полуавтономный органоид

Ответ



Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке структуры клетки. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) состоит из РНК и белков
2) состоит из трех субъединиц
3) синтезируется в гиалоплазме
4) осуществляет синтез белка
5) может прикрепляться к мембране ЭПС

Ответ

© Д.В.Поздняков, 2009-2019

Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС) , или эндоплазматический ретикулум (ЭПР) , — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.

Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты («отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.

Или комплекс Гольджи , — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х-6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.

Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).

Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Лизосомы

Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом .

Различают: 1) первичные лизосомы , 2) вторичные лизосомы . Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.

Вакуоли

Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль . Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком . В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.

Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки , отдельные элементы которой могут переходить друг в друга.

Митохондрии

1 — наружная мембрана;
2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК.

Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.

Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар , где происходит накопление Н + .

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.

Пластиды

1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана; 6 — ламеллы; 7 — зерна крахмала; 8 — липидные капли.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид : лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40-60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н + . Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Рибосомы

1 — большая субъединица; 2 — малая субъединица.

Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50-63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).

В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы) . В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).

Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Цитоскелет

Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр составляет примерно 24 нм, толщина стенки — 5 нм. Основной химический компонент — белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты — нити диаметром 5-7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.

Включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками. В клетках высших растений (голосеменные, покрытосеменные) клеточный центр центриолей не имеет. Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей. Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.

Органоиды движения

Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибриллы (мышечные клетки) и др.

Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. В основании аксонемы находятся базальные тельца, представленные двумя взаимно перпендикулярными центриолями (каждое базальное тельце состоит из девяти триплетов микротрубочек, в его центре микротрубочек нет). Длина жгутика достигает 150 мкм, реснички в несколько раз короче.

Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.

    Перейти к лекции №6 «Эукариотическая клетка: цитоплазма, клеточная оболочка, строение и функции клеточных мембран»

Биология [Полный справочник для подготовки к ЕГЭ] Лернер Георгий Исаакович

2.4.1. Особенности строения эукариотических и прокариотических клеток. Сравнительные данные

Сравнительная характеристика эукариотических и прокариотических клеток.

Строение эукариотичеких клеток.

Функции эукариотических клеток . Клетки одноклеточных организмов осуществляют все функции, характерные для живых организмов – обмен веществ, рост, развитие, размножение; способны к адаптации.

Клетки многоклеточных организмов дифференцированы по строению, в зависимости от выполняемых ими функций. Эпителиальные, мышечные, нервные, соединительные ткани формируются из специализированных клеток.

ПРИМЕРЫ ЗАДАНИЙ

Часть А

А1. К прокариотическим организмам относится

1) бацилла 2) гидра 3) амеба 4) вольвокс

Из книги Справочник по правописанию и стилистике автора Розенталь Дитмар Эльяшевич

§ 115. Сравнительные обороты 1. Запятыми выделяются или отделяются сравнительные обороты, начинающиеся союзами словно, будто, как будто, точно, чем, нежели, что и др., например: Иной раз подстрелишь зайца, ранишь его в ногу, а он кричит, словно ребенок (Чехов); На Красной

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

2.1. Клеточная теория, ее основные положения, роль в формировании современной естественнонаучной картины мира. Развитие знаний о клетке. Клеточное строение организмов, сходство строения клеток всех организмов – основа единства органического мира, доказательства родства

Из книги Женское здоровье. Большая медицинская энциклопедия автора Автор неизвестен

2.2. Клетка – единица строения, жизнедеятельности, роста и развития организмов. Многообразие клеток. Сравнительная характеристика клеток растений, животных, бактерий, грибов Основные термины и понятия, проверяемые в экзаменационной работе: клетки бактерий, клетки грибов,

Из книги Атлас: анатомия и физиология человека. Полное практическое пособие автора Зигалова Елена Юрьевна

2.3. Химическая организация клетки. Взаимосвязь строения и функций неорганических и органических веществ (белков, нуклеиновых кислот, углеводов, липидов, АТФ), входящих в состав клетки. Обоснование родства организмов на основе анализа химического состава их

Из книги Лучшие мысли и изречения древних в одном томе автора Душенко Константин Васильевич

2.4. Строение про– и эукариотной клеток. Взаимосвязь строения и функций частей и органоидов клетки – основа ее целостности Основные термины и понятия, проверяемые в экзаменационной работе: аппарат Голъджи, вакуоль, клеточная мембрана, клеточная теория, лейкопласты,

Из книги автора

2.7. Клетка – генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Особенности соматических и половых клеток. Жизненный цикл клетки: интерфаза и митоз. Митоз – деление соматических клеток. Мейоз. Фазы

Из книги автора

4.2. Царство Бактерии. Особенности строения и жизнедеятельности, роль в природе. Бактерии – возбудители заболеваний растений, животных, человека. Профилактика заболеваний, вызываемых бактериями. Вирусы Основные термины и понятия, проверяемые в экзаменационной работе:

Из книги автора

4.3. Царство Грибы. Строение, жизнедеятельность, размножение. Использование грибов для получения продуктов питания и лекарств. Распознавание съедобных и ядовитых грибов. Лишайники, их разнообразие, особенности строения и жизнедеятельности. Роль в природе грибов и

Из книги автора

4.4. Царство Растения. Особенности строения тканей и органов. Жизнедеятельность и размножение растительного организма, его целостность Основные термины и понятия, проверяемые в экзаменационной работе: автотрофное питание, виды тканей, видоизменения органов, дыхание,

Из книги автора

4.6. Царство Животные. Главные признаки подцарств одноклеточных и многоклеточных животных. Одноклеточные и беспозвоночные животные, их классификация, особенности строения и жизнедеятельности, роль в природе и жизни человека. Характеристика основных типов

Из книги автора

4.7. Хордовые животные, их классификация, особенности строения и жизнедеятельности, роль в природе и жизни человека. Характеристика основных классов хордовых. Поведение животных 4.7.1. Общая характеристика типа Хордовых Основные термины и понятия, проверяемые в

Из книги автора

Глава 1. Особенности анатомического строения Женский организм – особый, именно он служит зарождению новой жизни. Это накладывает особый отпечаток на строение и функции женского организма, чтобы женщина смогла благополучно зачать, выносить, родить и вскормить

Из книги автора

Глава 1. Особенности анатомического строения Период до 7–8 лет рассматривают как асексуальный, или период гормонального покоя. В гипоталамусе образуются гонадотропин-рилизинг-гормоны в очень незначительном количестве; гипофиз выделяет лютеинирующий гормон и

Из книги автора

Из книги автора

Из книги автора

Сравнительные жизнеописания Взаимное послушание и благожелательство, достигнутое без предварительной борьбы, есть проявление бездеятельности и робости и несправедливо носит имя единомыслия.«Агесилай», 5Славное отличается от позорного более всего надлежащей